THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW6 Solution

Yan Lung Li

1. (P. 224 Q15)

Let $x \in \mathbb{R}$ be fixed. To show g is differentiable at x, it suffices to show that $\left.g\right|_{I}$ is differentiable at x for some open interval I containing x.

Let $x^{\prime}=x-3 c$, and let $I=(x-c, x+c)$, then for all $y \in I, y \geq x-c$, and hence $y-c \geq x-2 c>x$.
Therefore, for all $y \in I$, we may write

$$
g(y)=\int_{y-c}^{y+c} f(t) d t=\int_{x^{\prime}}^{y+c} f(t) d t-\int_{x^{\prime}}^{y-c} f(t) d t=h(y+c)-h(y-c)
$$

where $h(z)=\int_{x^{\prime}}^{z} f(t) d t$, defined on $\left(x^{\prime},+\infty\right)$ (which contains I). Since f is continuous on \mathbb{R} (in particular on $\left[x^{\prime},+\infty\right)$), by Fundamental Theorem of Calculus (Theorem 2.1 (ii) of the lecture note), h is differentiable on $\left(x^{\prime},+\infty\right)$ with $h^{\prime}(z)=f(z)$.

Therefore, on I, since $g(y)=h(y+c)-h(y-c)$, with the fact that h is differentiable on $\left(x^{\prime},+\infty\right)$, which imply h is differentiable at $y+c$ and $y-c$ for all $y \in I,\left.g\right|_{I}$ is differentiable at x, with $g^{\prime}(x)=h^{\prime}(x+c)-h^{\prime}(x-c)=$ $f(x+c)-f(x-c)$.

Remark: Most students can recognise g as the difference of two primitives of f. However, only a few could aware that these primitives are defined on some half-interval only (e.g. $\left[0,+\infty\right.$) for $\left.F(z)=\int_{0}^{z} f(t) d t\right)$. One has to be careful about the domain of these primitives to argue the differentiability of g; also, some of the "standard calculus facts" involving integrations need careful justifications in this course. For instance, one should avoid the convention $\int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t$ for $a<b$, since $\int_{b}^{a} f(t) d t$ does not make sense in our definition of integral.
2. (P. 225 Q21)
(a) Since for all $t \in \mathbb{R},(t f \pm g)^{2} \geq 0$, by Prop. 1.12 of Lecture note, we have $\int_{a}^{b}(t f \pm g)^{2} \geq 0$.
(b) For any $t>0$, expanding $\int_{a}^{b}(t f \pm g)^{2}$, we have

$$
\int_{a}^{b}(t f \pm g)^{2}=\int_{a}^{b}\left(t^{2} f^{2} \pm 2 t f g+g^{2}\right)
$$

Since $\int_{a}^{b}(t f-g)^{2} \geq 0$ by (a), we have

$$
2 t\left(\pm \int_{a}^{b} f g\right) \leq t^{2} \int_{a}^{b} f^{2}+\int_{a}^{b} g^{2}
$$

Since $t>0$, the above implies

$$
2\left(\pm \int_{a}^{b} f g\right) \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

Therefore, we have

$$
2\left|\int_{a}^{b} f g\right| \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

(c) If $\int_{a}^{b} f^{2}=0$, then by the inquality in (b), for all $t>0$, we have

$$
2\left|\int_{a}^{b} f g\right| \leq \frac{1}{t} \int_{a}^{b} g^{2}
$$

Let $t \rightarrow 0$, by sandwich theorem, we have $\left|\int_{a}^{b} f g\right|=0$, and hence $\int_{a}^{b} f g=0$.
(d) (i) $\left|\int_{a}^{b} f g\right|^{2} \leq\left(\int_{a}^{b}|f g|\right)^{2}$: By Prop. 1.12 (ii), $\left|\int_{a}^{b} f g\right| \leq \int_{a}^{b}|f g|$, squaring both sides imply $\left|\int_{a}^{b} f g\right|^{2} \leq$ $\left(\int_{a}^{b}|f g|\right)^{2}$.
(ii) $\left(\int_{a}^{b}|f g|\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right) \cdot\left(\int_{a}^{b} g^{2}\right)$: Replacing f, g by $|f|$ and $|g|$ respectively, we may assume that $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \in[a, b]$. Hence the desired inequality becomes

$$
\left(\int_{a}^{b} f g\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right) \cdot\left(\int_{a}^{b} g^{2}\right)
$$

Case I: $\int_{a}^{b} f^{2}=0: \operatorname{By}(\mathrm{c}), \int_{a}^{b} f g=0$. Therefore,
Case II: $\int_{a}^{b} g^{2}=0: B y(c)$, with the interchange of the roles of f and $g, \int_{a}^{b} f g=0$. Therefore,

$$
\left(\int_{a}^{b} f g\right)^{2}=0=\left(\int_{a}^{b} f^{2}\right) \cdot\left(\int_{a}^{b} g^{2}\right)
$$

Case III: $\int_{a}^{b} f^{2} \neq 0$ and $\int_{a}^{b} g^{2} \neq 0$: Apply the inequality in (b) with $t=\frac{\sqrt{\left(\int_{a}^{b} g^{2}\right)}}{\sqrt{\left(\int_{a}^{b} f^{2}\right)}}>0$, we have

$$
\begin{aligned}
2 \int_{a}^{b} f g & \leq \frac{\sqrt{\left(\int_{a}^{b} g^{2}\right)}}{\sqrt{\left(\int_{a}^{b} f^{2}\right)}} \int_{a}^{b} f^{2}+\frac{\sqrt{\left(\int_{a}^{b} f^{2}\right)}}{\sqrt{\left(\int_{a}^{b} g^{2}\right)}} \int_{a}^{b} g^{2} \\
& =2 \sqrt{\left(\int_{a}^{b} f^{2}\right)} \sqrt{\left(\int_{a}^{b} g^{2}\right)}
\end{aligned}
$$

which implies

$$
\left(\int_{a}^{b} f g\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right) \cdot\left(\int_{a}^{b} g^{2}\right)
$$

Remark: some students did not aware the cases which $\int_{a}^{b} f^{2}=0$ or $\int_{a}^{b} g^{2}=0$, each of which will make the inequality in (b) not applicable.

